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Abstract 

This paper considers the problem of viscous dissipation in the flow of Newtonian fluid through a tube of 
annular cross section, with Dirichlet boundary conditions. The solution of the problem is obtained by a 
series expansion about the complete eigenfunctions system of a Sturm-Liouville problem. Eigenfunctions 
and eigenvalues of this Sturm-Liouville problem are obtained by Galerkin’s method. 
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Introduction 

The problem of viscous dissipation in the fluid flow through a tube of annular cross section has 
many practical applications. An example is oil product transport through ducts; another is the 
polymer processing [12]. 

This problem has constituted the object of many researches. Recently, Valko [11] has obtained 
an approximate solution by means of a combined method which uses the Laplace transform and 
Galerkin method. Other approaches of the problem have been given in [6], [9], [7]. 

In [1] we obtained an approximate solution of the problem of viscous dissipation in the case of 
incompressible fluid flow through a circular cross section tube. 

Now we will consider the flow of Newtonian fluid through a tube of annular cross section with 
Dirichlet boundary conditions . At the entrance of tube the temperature of fluid is 0T . The walls 
of radius 1r  and 2r , 21 rr <  are the same temperature. The flow is slow thus we can neglect the 
heat transfer by conduction in flow direction. At the same time we will consider that the fluid 
density ρ , specific heat pC and the heat transfer coefficient k  are constant. The flow is related 
to a polar spatial coordinate system, the Ox  axis is along the tube axis, the radial coordinate 
will be considered to be r and R is the radius of the tube. For the fluid velocity in the cross 
section we will consider the expression 
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where 0v  is the maximum annular velocity. 
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Given these conditions the energy equation is [4], [11]: 
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where μ  is the dynamic viscosity of the fluid. 

The aim of this article is to establish an approximate solution of equation (2), which verifies 
certain initial and boundary conditions. 

The plan of the article is: in section two we formulate the mathematical problem, section three 
will contain the algorithm for the determination of eigenvalues and eigenfunctions (for the 
Sturm-Liouville problem obtained by method of separation of variables) with Galerkin’s 
method [2]; in the last section we will present the approximate solution of the problem and some 
numerical results. 

The Mathematical Problem 

We associate to equation (2) the initial condition 

 0,0 TTx ==  (3) 

and the boundary conditions 

 )0(,, 01 >== xTTrr  (4) 

 )0(,, 02 >== xTTrr . (5) 

It is suitable to rewrite the equation (2) and the initial and boundary conditions (3), (4), (5) in 
dimensionless form. With the transformation group 
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the equation (2) and the boundary conditions (3), (4), (5) become: 
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 0,0 == θψ , (8) 

 )0(,0,1 >== ψθη , (9) 

 )0(,0,0 >== ψθηη , (10) 
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It is easy to show that a particular solution of equation (7) which verifies conditions (9) and (10) 
is: 
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The change of function 
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 1θ+=θ u  (12) 
leads to the equation 
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The unknown function u will satisfy the conditions (9) and (10) and the initial condition (8) is 
replaced by: 

 1,0 θ−==ψ u . (14) 
The type of equation (13) and boundary conditions (9) and (10) allow us to apply the method of 
separation of variables in order to determine function u. By this method the function u is 
obtained under the form: 
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where nΦ  and nλ  are the eigenvalues and the eigenfunctions of Sturm-Liouville problem: 
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 0,;0,1 0 =Φ==Φ= ηηη . (17) 

The Application of Galerkin’s Method 

For the determination of eigenfunctions and eigenvalues of Sturm-Liouville problem (16), (17) 
we will apply Galerkin’s method. For this we consider the bilinear forms ( )⋅⋅ ,a  and ( )⋅⋅,b  
defined on ( ) ( )0
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We look for the eigenpair ( )Φ,λ  which satisfies 
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(17 /) is called a variational formulation of (17) [3]. 

We look for the solution of (17 /) under the approximate form 
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where ∗∈ Nn  is the approach level of function Φ  and ( ) ∗∈ϕ Nkk  is a complete system of 
functions in [ ]02 ,1 ηL , functions which verify conditions [5] 

 ( ) ( ) 0,01 0 == ηϕϕ kk , ∗∈ Nk . (20) 

The unknown coefficients nkak ,1, =  are determined if giving the conditions 



28  Tudor Boacǎ  
 

 

 ( ) ( )jnjn ba ϕλϕ ,, 2 Φ⋅=Φ , nj ,1= , (21) 

By applying these conditions we obtain the linear algebraic system in unknown ka , nk ,1= : 
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where 

 ( ) nkja jkkj ,1,,, =−= ϕϕα , (23) 

 ( ) nkjb jkkj ,1,,, == ϕϕβ . (24) 

Because the system (22) must have nontrivial solutions, we obtain the equation 

 02 =λ+≡Δ BAn , (25) 

where A and B are the matrix ( )
njkkjA

,1, =
α= , ( )

njkkjB
,1, =

β= . 

The solutions of equations (25) represent the approximate values, for the n approach level, for 
the eigenvalues 2

1λ , 22
2 ,, nλλ L . 

The solutions of equation (25) are difficult to be obtained under this form. Consequently, 
through elementary transformations of determinant nΔ  this equation takes the form [8]: 

 02 =λ− nIC , (26) 

where nI  is the identity matrix of n order. 

Unlike matrix A and B which are symmetric, matrix C does not have this property anymore. 
Therefore we must adopt an adequate method for the determination of its eigenvalues [13]. 

In the following we will use the complete system of functions ( ) ∗∈ϕ Nkk  in [ ]02 ,1 ηL :  

 ( ) ( ) ( ) ( ) ( )ημμμημηϕ ⋅⋅−⋅⋅= kkkkk YJYJ 0000 , (27) 

where 0J  and 0Y  are the Bessel function of the first and second kind and zero order 

respectively and ∗∈ Nkk ,μ are the roots of equation:  

 ( ) ( ) ( ) ( )000000 ημμμημ ⋅⋅−⋅⋅ YJYJ . (28) 

The integrals which appear in formulas (23), (24) are calculated with a quadrature formula that 
must be compatible with Galerkin’s method [10]. The eigenvalues of the Sturm-Liouville 
problem obtained by this method are presented in the next section. 

The eigenfunctions of the problem (18), (19) are the analytical form 

 ( ) ( ) ( ) ( ) ( )[ ]∑
=

⋅⋅−⋅⋅=Φ
n

j
kkkkiji YJYJc

1
0000 ημμμημη  , ni ,1=  (29) 

where ( ) niccc inii ,1,,,, 21 =L  are the eigenvecteurs of matrix BA 2λ+ . 

The Approximate Solution of the Problem 

The unknown function u, for the n level of approximation of Galerkin’s method, is obtained 
from (15) and (27): 
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The coefficients nici ,1, =  from (30) are determined by the use of the condition (14) and by 
considering that the solutions nii ,1, =Φ  of the problem (16), (17) are orthogonal with weight 

( )ηη f⋅  on [ ]0,1 η  [5]. Because functions nii ,1, =Φ  are not obtained exactly, we prefer to 
use orthogonality with weight η  of functions njj ,1, =ϕ  on [ ]0,1 η .Thus, for the n level of 

approximation, the constants nici ,1, =  are determined by the resolution of the linear algebraic 
system: 
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The final solution of the problem is obtained now by using relations (12), (15) and (30): 
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                 Fig. 1. Dimensionless temperature profiles for  M=1, 20 =η , 08,0...03,0=ψ  

 

As an example we will consider 20 =η  and a fluid with 1=M . The eigenvalues of Sturm-
Liouville problem (16), (17) are presented in table 1. The variation of dimensionless 
temperature θ  given by (32) is presented in figure 1. In abscise axis there is the reduced radial 
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distance η  and in axis of ordinates there is presented the dimensionless temperature θ . The 
variation of dimensionless temperature θ  is presented for some values of dimensionless 
variable ψ . 

Table 1. Eigenvalues of Sturm-Liouville problem 
  n 1 2 3 4 5 6 7 8 9 10 

2
nλ  5,64 12,36 19,09 25,83 32,57 39,31 46,05 52,70 59,53 66,27 

The calculations have been realized for the approximation level 10=n  and the algorithm 
presents considerable stability. 

As compared to Valko [11], the paper presents the advantage of a simpler algorithm which can 
also be adapted to other boundary conditions (Dirichlet and Robin type conditions) by an 
appropriate changing of the condition (17) and of the equation (28). 
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Asupra disipaţiei vâscoase în mişcarea unui fluid newtonian 
printr-un tub de secţiune inelară 

Rezumat 

În acest articol este studiată problema disipaţiei vâscoase in mişcarea unui fluid newtonian printr-un tub 
de secţiune inelară, cu condiţii la limită de tip Dirichlet. Soluţia problemei este obţinută sub forma unei 
serii după sistemul complet de funcţii proprii al unei probleme de tip Sturm-Liouville. Valorile proprii şi 
funcţiile proprii ale acestei probleme Sturm-Liouville sunt obţinute cu metoda lui Galerkin. 


